A Comparative Study of Feature Extraction and Classification Methods for Iris Recognition
نویسندگان
چکیده
Iris recognition is one of commonly employed biometric for personal recognition. In this paper, Single Value Decomposition (SVD), Automatic Feature Extraction (AFE), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used to extract the iris feature from a pattern named IrisPattern based on the iris image. The IrisPatterns are classified using a Feedforward Backpropagation Neural Network (BPNN) and Support Vector Machines (SVM) with Radial Basis Function (RBF) kernel with different dimensions and a comparative study is carried out. From the experimental result, it is observed that ICA is the most effective feature extraction method for both BPNN and SVM with Gaussian RBF for the consider datats. Futher, SVM with Gaussian RBF can classify faster than BPNN.
منابع مشابه
A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کاملEvaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کامل